ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0912.4742
39
349

Optimizing Histogram Queries under Differential Privacy

23 December 2009
Chao Li
Michael Hay
Vibhor Rastogi
G. Miklau
A. Mcgregor
ArXivPDFHTML
Abstract

Differential privacy is a robust privacy standard that has been successfully applied to a range of data analysis tasks. Despite much recent work, optimal strategies for answering a collection of correlated queries are not known. We study the problem of devising a set of strategy queries, to be submitted and answered privately, that will support the answers to a given workload of queries. We propose a general framework in which query strategies are formed from linear combinations of counting queries, and we describe an optimal method for deriving new query answers from the answers to the strategy queries. Using this framework we characterize the error of strategies geometrically, and we propose solutions to the problem of finding optimal strategies.

View on arXiv
Comments on this paper