ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0912.3309
61
11

New Generalization Bounds for Learning Kernels

17 December 2009
Corinna Cortes
M. Mohri
Afshin Rostamizadeh
ArXiv (abs)PDFHTML
Abstract

This paper presents several novel generalization bounds for the problem of learning kernels based on the analysis of the Rademacher complexity of the corresponding hypothesis sets. Our bound for learning kernels with a convex combination of p base kernels has only a log(p) dependency on the number of kernels, p, which is considerably more favorable than the previous best bound given for the same problem. We also give a novel bound for learning with a linear combination of p base kernels with an L_2 regularization whose dependency on p is only in p^{1/4}.

View on arXiv
Comments on this paper