ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0912.2026
84
5
v1v2v3v4 (latest)

Adaptive estimation of spectral densities via wavelet thresholding and information projection

10 December 2009
Jérémie Bigot
R. B. Lirio
Jean-Michel Loubes
Lilian Muñiz Alvarez
ArXiv (abs)PDFHTML
Abstract

In this paper, we study the problem of adaptive estimation of the spectral density of a stationary Gaussian process. For this purpose, we consider a wavelet-based method which combines the ideas of wavelet approximation and estimation by information projection in order to warrants that the solution is a nonnegative function. The spectral density of the process is estimated by projecting the wavelet thresholding expansion of the periodogram onto a family of exponential functions. This ensures that the spectral density estimator is a strictly positive function. Then, by Bochner's theorem, the corresponding estimator of the covariance function is semidefinite positive. The theoretical behavior of the estimator is established in terms of rate of convergence of the Kullback-Leibler discrepancy over Besov classes. We also show the excellent practical performance of the estimator in some numerical experiments.

View on arXiv
Comments on this paper