Eigenvectors of some large sample covariance matrix ensembles

Abstract
We consider sample covariance matrices where is a real or complex matrix with i.i.d. entries with finite moment and is a positive definite matrix. In addition we assume that the spectral measure of almost surely converges to some limiting probability distribution as and We quantify the relationship between sample and population eigenvectors by studying the asymptotics of functionals of the type where is the identity matrix, is a bounded function and is a complex number. This is then used to compute the asymptotically optimal bias correction for sample eigenvalues, paving the way for a new generation of improved estimators of the covariance matrix and its inverse.
View on arXivComments on this paper