92
382

Laplacian Support Vector Machines Trained in the Primal

Abstract

In the last few years, due to the growing ubiquity of unlabeled data, much effort has been spent by the machine learning community to develop better understanding and improve the quality of classifiers exploiting unlabeled data. Following the manifold regularization approach, Laplacian Support Vector Machines (LapSVMs) have shown the state of the art performance in semi--supervised classification. In this paper we present two strategies to solve the primal LapSVM problem, in order to overcome some issues of the original dual formulation. Whereas training a LapSVM in the dual requires two steps, using the primal form allows us to collapse training to a single step. Moreover, the computational complexity of the training algorithm is reduced from O(n^3) to O(n^2) using preconditioned conjugate gradient, where n is the combined number of labeled and unlabeled examples. We speed up training by using an early stopping strategy based on the prediction on unlabeled data or, if available, on labeled validation examples. This allows the algorithm to quickly compute approximate solutions with roughly the same classification accuracy as the optimal ones, considerably reducing the training time. Due to its simplicity, training LapSVM in the primal can be the starting point for additional enhancements of the original LapSVM formulation, such as those for dealing with large datasets. We present an extensive experimental evaluation on real world data showing the benefits of the proposed approach.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.