ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0906.5190
72
6

High Dimensional Nonlinear Learning using Local Coordinate Coding

29 June 2009
Kai Yu
Tong Zhang
    SSL
ArXivPDFHTML
Abstract

This paper introduces a new method for semi-supervised learning on high dimensional nonlinear manifolds, which includes a phase of unsupervised basis learning and a phase of supervised function learning. The learned bases provide a set of anchor points to form a local coordinate system, such that each data point xxx on the manifold can be locally approximated by a linear combination of its nearby anchor points, with the linear weights offering a local-coordinate coding of xxx. We show that a high dimensional nonlinear function can be approximated by a global linear function with respect to this coding scheme, and the approximation quality is ensured by the locality of such coding. The method turns a difficult nonlinear learning problem into a simple global linear learning problem, which overcomes some drawbacks of traditional local learning methods. The work also gives a theoretical justification to the empirical success of some biologically-inspired models using sparse coding of sensory data, since a local coding scheme must be sufficiently sparse. However, sparsity does not always satisfy locality conditions, and can thus possibly lead to suboptimal results. The properties and performances of the method are empirically verified on synthetic data, handwritten digit classification, and object recognition tasks.

View on arXiv
Comments on this paper