ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0905.2473
67
1

On the Workings of Genetic Algorithms: The Genoclique Fixing Hypothesis

15 May 2009
Keki M. Burjorjee
ArXivPDFHTML
Abstract

We recently reported that the simple genetic algorithm (SGA) is capable of performing a remarkable form of sublinear computation which has a straightforward connection with the general problem of interacting attributes in data-mining. In this paper we explain how the SGA can leverage this computational proficiency to perform efficient adaptation on a broad class of fitness functions. Based on the relative ease with which a practical fitness function might belong to this broad class, we submit a new hypothesis about the workings of genetic algorithms. We explain why our hypothesis is superior to the building block hypothesis, and, by way of empirical validation, we present the results of an experiment in which the use of a simple mechanism called clamping dramatically improved the performance of an SGA with uniform crossover on large, randomly generated instances of the MAX 3-SAT problem.

View on arXiv
Comments on this paper