ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0903.5292
43
29

A Mixture-Based Approach to Regional Adaptation for MCMC

30 March 2009
Radu V. Craiu
Antonio F Di Narzo
ArXivPDFHTML
Abstract

Recent advances in adaptive Markov chain Monte Carlo (AMCMC) include the need for regional adaptation in situations when the optimal transition kernel is different across different regions of the sample space. Motivated by these findings, we propose a mixture-based approach to determine the partition needed for regional AMCMC. The mixture model is fitted using an online EM algorithm (see Andrieu and Moulines, 2006) which allows us to bypass simultaneously the heavy computational load and to implement the regional adaptive algorithm with online recursion (RAPTOR). The method is tried on simulated as well as real data examples.

View on arXiv
Comments on this paper