ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0901.4392
83
212

Sparse Principal Components Analysis

28 January 2009
Iain M. Johnstone
A. Lu
ArXivPDFHTML
Abstract

Principal components analysis (PCA) is a classical method for the reduction of dimensionality of data in the form of n observations (or cases) of a vector with p variables. For a simple model of factor analysis type, it is proved that ordinary PCA can produce a consistent (for n large) estimate of the principal factor if and only if p(n) is asymptotically of smaller order than n. There may be a basis in which typical signals have sparse representations: most co-ordinates have small signal energies. If such a basis (e.g. wavelets) is used to represent the signals, then the variation in many coordinates is likely to be small. Consequently, we study a simple "sparse PCA" algorithm: select a subset of coordinates of largest variance, estimate eigenvectors from PCA on the selected subset, threshold and reexpress in the original basis. We illustrate the algorithm on some exercise ECG data, and prove that in a single factor model, under an appropriate sparsity assumption, it yields consistent estimates of the principal factor.

View on arXiv
Comments on this paper