ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0901.2416
60
1

TR01: Time-continuous Sparse Imputation

16 January 2009
J. Gemmeke
B. Cranen
    NoLa
ArXivPDFHTML
Abstract

An effective way to increase the noise robustness of automatic speech recognition is to label noisy speech features as either reliable or unreliable (missing) prior to decoding, and to replace the missing ones by clean speech estimates. We present a novel method to obtain such clean speech estimates. Unlike previous imputation frameworks which work on a frame-by-frame basis, our method focuses on exploiting information from a large time-context. Using a sliding window approach, denoised speech representations are constructed using a sparse representation of the reliable features in an overcomplete basis of fixed-length exemplar fragments. We demonstrate the potential of our approach with experiments on the AURORA-2 connected digit database.

View on arXiv
Comments on this paper