ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0901.1504
65
14

A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem

12 January 2009
Bharath K. Sriperumbudur
David A. Torres
Gert R. G. Lanckriet
ArXivPDFHTML
Abstract

In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as special cases. Unlike the ℓ1\ell_1ℓ1​-norm approximation to the cardinality constraint, which previous methods have used in the context of sparse PCA, we propose a tighter approximation that is related to the negative log-likelihood of a Student's t-distribution. The problem is then framed as a d.c. (difference of convex functions) program and is solved as a sequence of convex programs by invoking the majorization-minimization method. The resulting algorithm is proved to exhibit \emph{global convergence} behavior, i.e., for any random initialization, the sequence (subsequence) of iterates generated by the algorithm converges to a stationary point of the d.c. program. The performance of the algorithm is empirically demonstrated on both sparse PCA (finding few relevant genes that explain as much variance as possible in a high-dimensional gene dataset) and sparse CCA (cross-language document retrieval and vocabulary selection for music retrieval) applications.

View on arXiv
Comments on this paper