ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0901.0026
80
139

On the Geometry of Discrete Exponential Families with Application to Exponential Random Graph Models

30 December 2008
S. Fienberg
Alessandro Rinaldo
Yi Zhou
ArXivPDFHTML
Abstract

There has been an explosion of interest in statistical models for analyzing network data, and considerable interest in the class of exponential random graph (ERG) models, especially in connection with difficulties in computing maximum likelihood estimates. The issues associated with these difficulties relate to the broader structure of discrete exponential families. This paper re-examines the issues in two parts. First we consider the closure of kkk-dimensional exponential families of distribution with discrete base measure and polyhedral convex support P\mathrm{P}P. We show that the normal fan of P\mathrm{P}P is a geometric object that plays a fundamental role in deriving the statistical and geometric properties of the corresponding extended exponential families. We discuss its relevance to maximum likelihood estimation, both from a theoretical and computational standpoint. Second, we apply our results to the analysis of ERG models. In particular, by means of a detailed example, we provide some characterization of the properties of ERG models, and, in particular, of certain behaviors of ERG models known as degeneracy.

View on arXiv
Comments on this paper