ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.4581
120
24

Feature Dynamic Bayesian Networks

25 December 2008
Marcus Hutter
ArXivPDFHTML
Abstract

Feature Markov Decision Processes (PhiMDPs) are well-suited for learning agents in general environments. Nevertheless, unstructured (Phi)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend PhiMDP to PhiDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the "best" DBN representation. I discuss all building blocks required for a complete general learning algorithm.

View on arXiv
Comments on this paper