ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.3502
133
44
v1v2v3 (latest)

A deconvolution approach to estimation of a common shape in a shifted curves model

18 December 2008
Jérémie Bigot
S. Gadat
ArXiv (abs)PDFHTML
Abstract

This paper considers the problem of adaptive estimation of a mean pattern in a randomly shifted curve model. We show that this problem can be transformed into a linear inverse problem, where the density of the random shifts plays the role of a convolution operator. An adaptive estimator of the mean pattern, based on wavelet thresholding is proposed. We study its consistency for the quadratic risk as the number of observed curves tends to infinity, and this estimator is shown to achieve a near-minimax rate of convergence over a large class of Besov balls. This rate depends both on the smoothness of the common shape of the curves and on the decay of the Fourier coefficients of the density of the random shifts. Hence, this paper makes a connection between mean pattern estimation and the statistical analysis of linear inverse problems, which is a new point of view on curve registration and image warping problems. Some numerical experiments are given to illustrate the performances of our approach and to compare them with another algorithm existing in the literature.

View on arXiv
Comments on this paper