ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0810.0332
54
18

Enhanced Integrated Scoring for Cleaning Dirty Texts

2 October 2008
Wilson Wong
Wei Liu
Bennamoun
ArXivPDFHTML
Abstract

An increasing number of approaches for ontology engineering from text are gearing towards the use of online sources such as company intranet and the World Wide Web. Despite such rise, not much work can be found in aspects of preprocessing and cleaning dirty texts from online sources. This paper presents an enhancement of an Integrated Scoring for Spelling error correction, Abbreviation expansion and Case restoration (ISSAC). ISSAC is implemented as part of a text preprocessing phase in an ontology engineering system. New evaluations performed on the enhanced ISSAC using 700 chat records reveal an improved accuracy of 98% as compared to 96.5% and 71% based on the use of only basic ISSAC and of Aspell, respectively.

View on arXiv
Comments on this paper