ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0809.3869
87
14

A class of unbiased location invariant Hill-type estimators for heavy tailed distributions

23 September 2008
Jiaona Li
Zuoxiang Peng
S. Nadarajah
ArXivPDFHTML
Abstract

Based on the methods provided in Caeiro and Gomes (2002) and Fraga Alves (2001), a new class of location invariant Hill-type estimators is derived in this paper. Its asymptotic distributional representation and asymptotic normality are presented, and the optimal choice of sample fraction by Mean Squared Error is also discussed for some special cases. Finally comparison studies are provided for some familiar models by Monte Carlo simulations.

View on arXiv
Comments on this paper