ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0807.3479
75
4

Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models

22 July 2008
F. Hubalek
Petra Posedel
ArXiv (abs)PDFHTML
Abstract

We provide a simple explicit estimator for discretely observed Barndorff-Nielsen and Shephard models, prove rigorously consistency and asymptotic normality based on the single assumption that all moments of the stationary distribution of the variance process are finite, and give explicit expressions for the asymptotic covariance matrix. We develop in detail the martingale estimating function approach for a bivariate model, that is not a diffusion, but admits jumps. We do not use ergodicity arguments. We assume that both, logarithmic returns and instantaneous variance are observed on a discrete grid of fixed width, and the observation horizon tends to infinity. As the instantaneous variance is not observable in practice, our results cannot be applied immediately. Our purpose is to provide a theoretical analysis as a starting point and benchmark for further developments concerning optimal martingale estimating functions, and for theoretical and empirical investigations, that replace the variance process with a substitute, such as number or volume of trades or implied variance from option data.

View on arXiv
Comments on this paper