ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0807.1106
83
24

Principal components analysis for sparsely observed correlated functional data using a kernel smoothing approach

7 July 2008
D. Paul
Jie Peng
ArXivPDFHTML
Abstract

In this paper, we consider the problem of estimating the covariance kernel and its eigenvalues and eigenfunctions from sparse, irregularly observed, noise corrupted and (possibly) correlated functional data. We present a method based on pre-smoothing of individual sample curves through an appropriate kernel. We show that the naive empirical covariance of the pre-smoothed sample curves gives highly biased estimator of the covariance kernel along its diagonal. We attend to this problem by estimating the diagonal and off-diagonal parts of the covariance kernel separately. We then present a practical and efficient method for choosing the bandwidth for the kernel by using an approximation to the leave-one-curve-out cross validation score. We prove that under standard regularity conditions on the covariance kernel and assuming i.i.d. samples, the risk of our estimator, under L2L^2L2 loss, achieves the optimal nonparametric rate when the number of measurements per curve is bounded. We also show that even when the sample curves are correlated in such a way that the noiseless data has a separable covariance structure, the proposed method is still consistent and we quantify the role of this correlation in the risk of the estimator.

View on arXiv
Comments on this paper