ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0807.0908
110
28

The Correspondence Analysis Platform for Uncovering Deep Structure in Data and Information

6 July 2008
F. Murtagh
ArXivPDFHTML
Abstract

We study two aspects of information semantics: (i) the collection of all relationships, (ii) tracking and spotting anomaly and change. The first is implemented by endowing all relevant information spaces with a Euclidean metric in a common projected space. The second is modelled by an induced ultrametric. A very general way to achieve a Euclidean embedding of different information spaces based on cross-tabulation counts (and from other input data formats) is provided by Correspondence Analysis. From there, the induced ultrametric that we are particularly interested in takes a sequential - e.g. temporal - ordering of the data into account. We employ such a perspective to look at narrative, "the flow of thought and the flow of language" (Chafe). In application to policy decision making, we show how we can focus analysis in a small number of dimensions.

View on arXiv
Comments on this paper