ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0806.4802
95
8

A new Hedging algorithm and its application to inferring latent random variables

30 June 2008
Y. Freund
Daniel J. Hsu
ArXivPDFHTML
Abstract

We present a new online learning algorithm for cumulative discounted gain. This learning algorithm does not use exponential weights on the experts. Instead, it uses a weighting scheme that depends on the regret of the master algorithm relative to the experts. In particular, experts whose discounted cumulative gain is smaller (worse) than that of the master algorithm receive zero weight. We also sketch how a regret-based algorithm can be used as an alternative to Bayesian averaging in the context of inferring latent random variables.

View on arXiv
Comments on this paper