ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0806.2669
102
55

Local Procrustes for Manifold Embedding: A Measure of Embedding Quality and Embedding Algorithms

16 June 2008
Y. Goldberg
Yaácov Ritov
ArXivPDFHTML
Abstract

We present the Procrustes measure, a novel measure based on Procrustes rotation that enables quantitative comparison of the output of manifold-based embedding algorithms (such as LLE (Roweis and Saul, 2000) and Isomap (Tenenbaum et al, 2000)). The measure also serves as a natural tool when choosing dimension-reduction parameters. We also present two novel dimension-reduction techniques that attempt to minimize the suggested measure, and compare the results of these techniques to the results of existing algorithms. Finally, we suggest a simple iterative method that can be used to improve the output of existing algorithms.

View on arXiv
Comments on this paper