ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0805.1976
71
3

On Berry--Esseen bounds for non-instantaneous filters of linear processes

14 May 2008
T. Cheng
Hwai-Chung Ho
ArXivPDFHTML
Abstract

Let Xn=∑i=1∞aiϵn−iX_n=\sum_{i=1}^{\infty}a_i\epsilon_{n-i}Xn​=∑i=1∞​ai​ϵn−i​, where the ϵi\epsilon_iϵi​ are i.i.d. with mean 0 and at least finite second moment, and the aia_iai​ are assumed to satisfy ∣ai∣=O(i−β)|a_i|=O(i^{-\beta})∣ai​∣=O(i−β) with β>1/2\beta >1/2β>1/2. When 1/2<β<11/2<\beta<11/2<β<1, XnX_nXn​ is usually called a long-range dependent or long-memory process. For a certain class of Borel functions K(x1,...,xd+1)K(x_1,...,x_{d+1})K(x1​,...,xd+1​), d≥0d\ge0d≥0, from Rd+1{\mathcal{R}}^{d+1}Rd+1 to R\mathcal{R}R, which includes indicator functions and polynomials, the stationary sequence K(Xn,Xn+1,...,Xn+d)K(X_n,X_{n+1},...,X_{n+d})K(Xn​,Xn+1​,...,Xn+d​) is considered. By developing a finite orthogonal expansion of K(Xn,...,Xn+d)K(X_n,...,X_{n+d})K(Xn​,...,Xn+d​), the Berry--Esseen type bounds for the normalized sum QN/N,QN=∑n=1N(K(Xn,...,Xn+d)−EK(Xn,...,Xn+d))Q_N/\sqrt{N},Q_N=\sum_{n=1}^N(K(X_ n,...,X_{n+d})-\mathrm{E}K(X_n,...,X_{n+d}))QN​/N​,QN​=∑n=1N​(K(Xn​,...,Xn+d​)−EK(Xn​,...,Xn+d​)) are obtained when QN/NQ_N/\sqrt{N}QN​/N​ obeys the central limit theorem with positive limiting variance.

View on arXiv
Comments on this paper