ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0805.1971
120
34

Confidence regions for the multinomial parameter with small sample size

14 May 2008
Djalil CHAFAÏ
D. Concordet
ArXivPDFHTML
Abstract

Consider the observation of n iid realizations of an experiment with d>1 possible outcomes, which corresponds to a single observation of a multinomial distribution M(n,p) where p is an unknown discrete distribution on {1,...,d}. In many applications, the construction of a confidence region for p when n is small is crucial. This concrete challenging problem has a long history. It is well known that the confidence regions built from asymptotic statistics do not have good coverage when n is small. On the other hand, most available methods providing non-asymptotic regions with controlled coverage are limited to the binomial case d=2. In the present work, we propose a new method valid for any d>1. This method provides confidence regions with controlled coverage and small volume, and consists of the inversion of the "covering collection"' associated with level-sets of the likelihood. The behavior when d/n tends to infinity remains an interesting open problem beyond the scope of this work.

View on arXiv
Comments on this paper