ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0804.4809
73
238

Fast Computation of Moore-Penrose Inverse Matrices

30 April 2008
P. Courrieu
ArXivPDFHTML
Abstract

Many neural learning algorithms require to solve large least square systems in order to obtain synaptic weights. Moore-Penrose inverse matrices allow for solving such systems, even with rank deficiency, and they provide minimum-norm vectors of synaptic weights, which contribute to the regularization of the input-output mapping. It is thus of interest to develop fast and accurate algorithms for computing Moore-Penrose inverse matrices. In this paper, an algorithm based on a full rank Cholesky factorization is proposed. The resulting pseudoinverse matrices are similar to those provided by other algorithms. However the computation time is substantially shorter, particularly for large systems.

View on arXiv
Comments on this paper