ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0804.0409
126
133

Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes

2 April 2008
A. Otmani
J. Tillich
L. Dallot
ArXivPDFHTML
Abstract

We cryptanalyse here two variants of the McEliece cryptosystem based on quasi-cyclic codes. Both aim at reducing the key size by restricting the public and secret generator matrices to be in quasi-cyclic form. The first variant considers subcodes of a primitive BCH code. We prove that this variant is not secure by finding and solving a linear system satisfied by the entries of the secret permutation matrix. The other variant uses quasi-cyclic low density parity-check codes. This scheme was devised to be immune against general attacks working for McEliece type cryptosystems based on low density parity-check codes by choosing in the McEliece scheme more general one-to-one mappings than permutation matrices. We suggest here a structural attack exploiting the quasi-cyclic structure of the code and a certain weakness in the choice of the linear transformations that hide the generator matrix of the code. Our analysis shows that with high probability a parity-check matrix of a punctured version of the secret code can be recovered in cubic time complexity in its length. The complete reconstruction of the secret parity-check matrix of the quasi-cyclic low density parity-check codes requires the search of codewords of low weight which can be done with about 2372^{37}237 operations for the specific parameters proposed.

View on arXiv
Comments on this paper