ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0802.1357
87
50

A Bayesian reassessment of nearest-neighbour classification

10 February 2008
L. Cucala
Jean-Michel Marin
Christian P. Robert
Mike Titterington
    BDL
ArXivPDFHTML
Abstract

The k-nearest-neighbour procedure is a well-known deterministic method used in supervised classification. This paper proposes a reassessment of this approach as a statistical technique derived from a proper probabilistic model; in particular, we modify the assessment made in a previous analysis of this method undertaken by Holmes and Adams (2002,2003), and evaluated by Manocha and Girolami (2007), where the underlying probabilistic model is not completely well-defined. Once a clear probabilistic basis for the k-nearest-neighbour procedure is established, we derive computational tools for conducting Bayesian inference on the parameters of the corresponding model. In particular, we assess the difficulties inherent to pseudo-likelihood and to path sampling approximations of an intractable normalising constant, and propose a perfect sampling strategy to implement a correct MCMC sampler associated with our model. If perfect sampling is not available, we suggest using a Gibbs sampling approximation. Illustrations of the performance of the corresponding Bayesian classifier are provided for several benchmark datasets, demonstrating in particular the limitations of the pseudo-likelihood approximation in this set-up.

View on arXiv
Comments on this paper