ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0801.4329
135
98

Estimators of Long-Memory: Fourier versus Wavelets

28 January 2008
Gilles Fay
Eric Moulines
François Roueff
M. Taqqu
ArXivPDFHTML
Abstract

There have been a number of papers written on semi-parametric estimation methods of the long-memory exponent of a time series, some applied, others theoretical. Some using Fourier methods, others using a wavelet-based technique. In this paper, we compare the Fourier and wavelet approaches to the local regression method and to the local Whittle method. We provide an overview of these methods, describe what has been done, indicate the available results and the conditions under which they hold. We discuss their relative strengths and weaknesses both from a practical and a theoretical perspective. We also include a simulation-based comparison. The software written to support this work is available on demand and we illustrate its use at the end of the paper.

View on arXiv
Comments on this paper