ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0712.3735
84
13

Nonparametric estimation for a stochastic volatility model

21 December 2007
Fabienne Comte
V. Genon‐Catalot
Y. Rozenholc
ArXivPDFHTML
Abstract

Consider discrete time observations (X_{\ell\delta})_{1\leq \ell \leq n+1}oftheprocess of the process oftheprocessXsatisfying satisfying satisfyingdX_t= \sqrt{V_t} dB_t,with, with ,withV_taone−dimensionalpositivediffusionprocessindependentoftheBrownianmotion a one-dimensional positive diffusion process independent of the Brownian motion aone−dimensionalpositivediffusionprocessindependentoftheBrownianmotionB.Forboththedriftandthediffusioncoefficientoftheunobserveddiffusion. For both the drift and the diffusion coefficient of the unobserved diffusion .ForboththedriftandthediffusioncoefficientoftheunobserveddiffusionV,weproposenonparametricleastsquareestimators,andprovideboundsfortheirrisk.Estimatorsarechosenamongacollectionoffunctionsbelongingtoafinitedimensionalspacewhosedimensionisselectedbyadatadrivenprocedure.Implementationonsimulateddataillustrateshowthemethodworks., we propose nonparametric least square estimators, and provide bounds for theirrisk. Estimators are chosen among a collection of functions belonging to a finite dimensional space whose dimension is selected by a data driven procedure. Implementation on simulated data illustrates how the method works.,weproposenonparametricleastsquareestimators,andprovideboundsfortheirrisk.Estimatorsarechosenamongacollectionoffunctionsbelongingtoafinitedimensionalspacewhosedimensionisselectedbyadatadrivenprocedure.Implementationonsimulateddataillustrateshowthemethodworks.

View on arXiv
Comments on this paper