ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0710.5349
103
19
v1v2 (latest)

A scale-based approach to finding effective dimensionality in manifold learning

29 October 2007
Xiaohui Wang
J. S. Marron
ArXiv (abs)PDFHTML
Abstract

The discovering of low-dimensional manifolds in high-dimensional data is one of the main goals in manifold learning. We propose a new approach to identify the effective dimension (intrinsic dimension) of low-dimensional manifolds. The scale space viewpoint is the key to our approach enabling us to meet the challenge of noisy data. Our approach finds the effective dimensionality of the data over all scale without any prior knowledge. It has better performance compared with other methods especially in the presence of relatively large noise and is computationally efficient.

View on arXiv
Comments on this paper