200
68

Improvements on removing non-optimal support points in D-optimum design algorithms

Abstract

We improve the inequality used in Pronzato [2003. Removing non-optimal support points in D-optimum design algorithms. Statist. Probab. Lett. 63, 223-228] to remove points from the design space during the search for a DD-optimum design. Let ξ\xi be any design on a compact space XRm\mathcal{X} \subset \mathbb{R}^m with a nonsingular information matrix, and let m+ϵm+\epsilon be the maximum of the variance function d(ξ,x)d(\xi,\mathbf{x}) over all xX\mathbf{x} \in \mathcal{X}. We prove that any support point x\mathbf{x}_{*} of a DD-optimum design on X\mathcal{X} must satisfy the inequality d(ξ,x)m(1+ϵ/2ϵ(4+ϵ4/m)/2)d(\xi,\mathbf{x}_{*}) \geq m(1+\epsilon/2-\sqrt{\epsilon(4+\epsilon-4/m)}/2). We show that this new lower bound on d(ξ,x)d(\xi,\mathbf{x}_{*}) is, in a sense, the best possible, and how it can be used to accelerate algorithms for DD-optimum design.

View on arXiv
Comments on this paper