ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0706.1836
183
19

Long Memory in Nonlinear Processes

13 June 2007
R. Deo
Mengchen Hsieh
Clifford M. Hurvich
P. Soulier
ArXivPDFHTML
Abstract

It is generally accepted that many time series of practical interest exhibit strong dependence, i.e., long memory. For such series, the sample autocorrelations decay slowly and log-log periodogram plots indicate a straight-line relationship. This necessitates a class of models for describing such behavior. A popular class of such models is the autoregressive fractionally integrated moving average (ARFIMA) which is a linear process. However, there is also a need for nonlinear long memory models. For example, series of returns on financial assets typically tend to show zero correlation, whereas their squares or absolute values exhibit long memory. Furthermore, the search for a realistic mechanism for generating long memory has led to the development of other nonlinear long memory models. In this chapter, we will present several nonlinear long memory models, and discuss the properties of the models, as well as associated parametric andsemiparametric estimators.

View on arXiv
Comments on this paper